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Basic Field Situation 

 From a population of S sampling units, 

s are selected and surveyed for the 

species. 

 Units are closed to changes in 

occupancy during a common ‘season’. 

 Units must be repeatedly surveyed 

within a season. 

 Camera-trap surveys: typically 

temporal replication based on fixed 

time periods (daily, weekly) 
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Resulting Data 

Unit 1 
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Single Season Model 

 

  = probability a unit is occupied. 

 

 pj = probability species is detected at 

 a unit in survey j (given 

 presence). 

 



Detection Probability in 

Camera-trap Studies 

 Pr (detect species at unit i survey j) = 

 

Pr (unit occupied during season) 

 

x Pr (at least 1 individual of species passes 

 camera trap during survey j) 

 

x Pr (species detected in survey j | unit 

 occupied and at least 1 individual 

 passes camera trap during survey j)  
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Detection Probability in 

Camera-trap Studies 

 Detection probability thus has 2 

components: 

 

 One based on space use 

 

 One based on camera  

• Camera must be “tripped” 

• Photo must permit species ID   

6 
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Single Season Model 

 Investigating patterns in occupancy. 

 

 Variety of approaches all recognizing that an 

observed ‘absence’ may be the result of a true 

absence or a nondetection. (e.g., Hewitt 1967, 

Geissler and Fuller 1987, Azuma et al. 1990, MacKenzie et 

al. 2002, Tyre et al. 2003, Wintle et al. 2004 and Stauffer et 

al. 2004) 

 

 MacKenzie et al. (2002) provide most general 

treatment of the problem. 
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Single Season Model 

 Consider the data consists of 2 ‘layers’ 

1. True presence/absence of the species. 

2. Observed data which are conditional upon 
species distribution. 

 

 Knowledge about the first layer is 
imperfect. 

 

 Must account for the observation process 
to make reliable inferences about 
occurrence.  
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Model Development 
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Observed Data Likelihood 

 Model all possible stochastic 

processes that may have resulted in 

observed detection histories. 

 

 Take verbal description of the 

observed data and translate it into a 

mathematical equation. 
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Observed Data Likelihood 

For example, 

 

Verbal description: species is present at the 

unit, was detected in first and third survey, 

not detected in second survey. 

 

Mathematical translation: 

1 101h

   1 1 2 3Pr 101 ψ 1p p p  h
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Observed Data Likelihood 

For example, 

 

Verbal description: species is present at the 

unit and was never detected, OR species is 

absent. 

 

Mathematical translation: 

2 000h

     
3

2

1

Pr 000 ψ 1 1 ψj

j

p


    h
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Observed Data Likelihood 
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Observed Data Likelihood 
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Observed Data Likelihood 

Biological 
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Observed Data Likelihood 

 Model likelihood is the product of the 
probability statements. 

 

 

 

 Likelihood can be maximized to obtain 
MLE’s, or used within a Bayesian 
framework. 

     
1
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Complete Data Likelihood 

 The data we wish we had! 

 

 zi is true presence/absence of species 

at unit i 

 

 Bernoulli random variable with 

Pr(success) = ψ 
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Complete Data Likelihood 
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Complete Data Likelihood 

 hij is detection/nondetection of species 

(given presence) in survey j of unit i 

 Bernoulli random variable with 

Pr(success) = p 

   
1

Pr , 1 1
ijij

hh

ij j i j jh p z p p
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Complete Data Likelihood 

 Combining these terms, the overall 

likelihood can be expressed as: 

 

 

 

 

 

 Note that many terms will disappear 
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Complete Data Likelihood 

 For example, if zi = 1 and hi = 101 
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Complete Data Likelihood 

 For example, if zi = 1 and hi = 000 
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Complete Data Likelihood 

 For example, if zi = 0 and hi = 000 
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Complete Data Likelihood 

 Unfortunately, the true values will 
typically be unknown 

 

 Solutions: 

 Replace with expected values 
• Expectation – Maximization (EM) 

Algorithm 

 

 Replace with imputed values (data 
augmentation) 

• Markov Chain Monte Carlo (MCMC) 
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Complete Data Likelihood 

 CDL can also be expanded to include 

units that were never surveyed 
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Covariates 

 Season-specific 

 constant within a season, but may 

vary between seasons. 

e.g., habitat type, patch size, generalized 

weather patterns 

 

 Survey-specific 

 may vary between surveys. 

e.g., local environmental conditions, 

observers 
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Covariates 

 Occupancy and detection probabilities 

may be functions of season-specific 

covariates (via logit link, say). 

 logit ψ a bi ix 

 logit c dij ip x 
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Covariates 

 Detection probabilities may also be a 

function of survey-specific covariates. 

 logit c d eij i ijp x z  
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Covariates 

 Covariates may be continuous or 
categorical. 

 

 Advisable to standardize continuous 
covariates on to some meaningful scale 
such that covariates are approximately 
symmetrically distributed about zero. 

 

 

 

 z-transformation can be done within 
PRESENCE. 

* i
i

x a
x

b
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Covariates 

 Categorical covariates with m 
categories should be represented with 
m – 1 indicator (dummy) variables. 

 

 e.g., if 4 habitat types, use 3 indicator 
variables; HabA, HabB, HabC, with 
habitat D considered the ‘standard’. 

 

 However, suggest all m indicator 
variables be included in data file. 
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‘Missing’ Observations 

 Implicit assumption that jth surveys of all 

units are conducted at (approximately) 

the same time; possibly unlikely in 

practice. 

 

 Camera failure or destruction may result 

in some units not being surveyed during 

some occasions. 
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‘Missing’ Observations 

Day 

Unit 1 2 3 4 5 

1 1 0 1 - 0 

2 - 0 - 1 1 

     1 1 2 3 5Pr 101 0 ψ 1 1p p p p    h

   2 2 4 5Pr 0 11 ψ 1 p p p    h
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‘Missing’ Observations 

 Survey-specific covariates can only be 

missing if associated detection survey 

is also missing. 

 

 Season-specific covariates cannot be 

missing. 
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Pr(occupied|nondetection) 

 “Given the species was not detected, 

is the unit occupied?” is sometimes of 

interest. 

 

 Can be derived from modelling results 

using Bayes theorem. 

 

 Referred to as “conditional” (on 

nondetection) occupancy 
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Pr(occupied|nondetection) 
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 Standard errors can be derived with 

the delta method. 



Single Season 

Model 

Part II 
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Model Assumptions 

 Closure. 

 Surveys are independent. 

 No unmodelled heterogeneity. 

 Species identified correctly (no false 

detections) 
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What if Occupancy 

Changes? 

 Can formally test by grouping sampling 
occasions within the season and using 
multiseason models 

 

 But changes do not always cause problems 

 

 If species physically occupies units at 
random within a season, ‘occupancy’ 
parameter relates to probability a unit is 
used by the species. 
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What if Occupancy 

Changes? 

 

 

 

 

Pr detect species at unit  in survey 

Pr uses unit  during season

Pr physically present at unit at uses unit

Pr detection in survey present and uses unit

i j

i

j

j







 Closure implies 2nd component = 1. 

 When changes are random, ‘detection probability’ is 
the product of 2nd and 3rd components 

 Recall that ‘detection probability’ also has spatial and 
camera components in camera-trap studies 
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What if Occupancy 

Changes? 
 Immigration/emigration only; ‘occupancy’ 

parameter relates to probability is present at 
a unit at end/beginning of season 
respectively. 
 should allow detection probability to vary 

within a season. 

 should pool some survey occasions. 

 

 Open models permitting staggered entry 
and departure times (only 1 entry/depart per 
season)  
 Single-season models (Kendall et al. 2013) 

 Multiple seasons (Chambert et al. 2015) 
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What if Occupancy 

Changes? 

 Some non-random changes may 

cause biases. 

 

 Is a ‘season’ defined appropriately? 

 

 Is time between surveys appropriate? 

 

 Area of active research. 
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Lack of Independence 

 Surveys are not independent if the outcome of 

survey A is dependent upon the outcome of 

survey B. 

 

 Some forms of dependence may be 

accommodated with good designs or modelling. 

 

 In some instances, parameter estimates may 

be OK, but standard errors too small. 
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Lack of Independence 

 To account for ‘trap response’ (unusual in 
CT studies); define a survey-specific 
covariate that equals 1 for all surveys after 
first detection at a site, 0 otherwise. 

Xij 

h 1 2 3 4 

0101 0 0 1 1 

1101 0 1 1 1 

0001 0 0 0 0 

0000 0 0 0 0 
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Accounting for Lack of 

Closure/Independence 

 “Spatial Correlation” option in PRESENCE 
(Hines et al. 2010, 2014) 

 

 Motivating example: surveying tigers on trails in 
India 

 

 Introduce 2 new parameters 
 θ – Pr(tiger on trail given not on trail  in previous 

segment): thta0 

 θ’ – Pr(tiger on trail given on trail  in previous 
segment): thta1 

 θ’’ – Pr(tiger on trail in first segment) 
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Accounting for Lack of 

Closure/Independence 
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Accounting for Lack of 

Closure/Independence 
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Accounting for Lack of 

Closure/Independence 

 Could also possibly be applied to 

account for temporal correlation or 

non-random changes in occupancy 

within a season. 

 

 Example: useful for modeling N.A. 

Breeding Bird Survey data 
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Unmodelled Heterogeneity 

In occupancy probabilities 

 parameter estimates should still be 

valid as average values across the 

units surveyed. 

 

In detection probabilities 

 occupancy will be underestimated. 

 covariates may account for some 

sources of variation. 
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Incorporating Heterogeneity 

 Finite Mixtures 

 Assume occupied units consist of G 

groups. 

 Each group has a different p. 

 Group membership is unknown hence 

a unit may belong to any of the G 

groups. 

       1 1 1 1 1 2 2Pr 10 ψ π 1 1 π 1p p p p       h
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Incorporating Heterogeneity 

 Random Effects 

 Assume pi is a random value from a 

continuous probability distribution 

(e.g., beta distribution, logit-normal). 

 

 Closed form expressions possible for 

some distributions. 

 

 Easily implemented using WinBUGS. 
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Abundance Induced 

Heterogeneity 

 Differences in the local abundance of 

the species between units may induce 

heterogeneity in detection probability. 

 

 Royle and Nichols (2003) suggested 

an extension of the above method to 

accommodate this. 

  iN

j

N

ij rp  11][
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Abundance Induced 

Heterogeneity 

 Local abundance is unknown, but a 

spatial distribution could be assumed 
(e.g., Poisson). 
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Abundance Induced 

Heterogeneity 
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Abundance Induced 

Heterogeneity 

 Occupancy is now a derived 

parameter: (1–e–). 

 

 Implicit assumption that the number of 

animals at a unit is constant. 

 

 Care must be taken in how 

‘abundance’ should be interpreted. 
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Abundance Induced 

Heterogeneity 

 Similar model can result through 

random effect on complementary log-

log link function for p. 

 

 A good approach for incorporating 

heterogeneity in detection for 

occupancy estimation, less reliable if 

inferences about abundance are 

desired. 
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Species Misidentification 

(False Positives)  

 If species is falsely detected then 

occupancy could be overestimated. 

 

 Much recent work; now a separate 

lecture 

 

 Perhaps not so important with 

camera-trap data? 
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Assessing Model Fit 

 MacKenzie and Bailey (2004) suggest 

a test based on the observed and 

expected number of sites with each 

possible detection history. 

 

 The expected number is predicted by 

the model, which may include 

covariates. 
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Assessing Model Fit 

   

 

 For example, for the history 101: 

 
1

Pr
s

h i

i

E


 h

Unit 

1 0.30 0.76 0.042 

2 0.35 0.74 0.050 

3 0.40 0.72 0.058 

4 0.45 0.70 0.066 

Total 0.216 

ψ̂i
ˆ

ip  Pr 101
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Assessing Model Fit 

   

 

 Use parametric bootstrap to assess 
the evidence for lack of fit. 

 

   

 

 used to adjust SE’s and AIC values. 

 
2

h h

h h

O E
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Assessing Model Fit 

 Test has been shown to perform well to identify 
poor model structure w.r.t. detection 
probabilities, but not occupancy probabilities. 

 

 Found to have generally low-power, especially 
for the sample sizes expected in many 
applications (s<100). 

 

 Recommend ≥10,000 bootstraps. 
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Assessing Model Fit 

 Test should be conducted on the most 

complicated model under 

consideration (the global model) and 

results applied to all models in 

candidate set. 

 e.g., if from global model             , this 

value is used to adjust AIC values and 

SE’s for all models. 

ˆ 1.53c 
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Assessing Model Fit 

 Posterior predictive checks could be 

used within a Bayesian setting to 

determine whether observed features 

of the data is “similar” to what a fitting 

model would expect. 
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Finite Population 

 In some circumstances, the sample of s 
units may constitute a large fraction of 
the population of interest. 

 

 Strictly speaking, the methods above 
estimate the probability of occupancy. 
 an underlying characteristic of the 

population. 

 

 The proportion of units occupied is a 
realisation of this process. 
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Finite Population 

 Distinction between them is of little 

practical consequence for ‘infinite’ 

populations, but may be for ‘finite’ 

populations. 

 

 SE’s will be too large if not accounted 

for. 
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Finite Population 

 The proportion of occupied sites could 

be calculated as: 

 

 

 

 

 SE derived from delta method 

1 1

ˆ ˆ

D
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Finite Population 

 When no covariates in the model, 

variance (ie SE2) of the proportion is: 

       

       

    
2
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67 

Finite Population 

 Alternatively, easily implemented using the 

data augmentation approach. 

 

 Presence/absence of the species is 

predicted for units where species not 

detected. 

 

 Occupancy state can also be predicted for 

units that were never surveyed. 
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Finite Population 
model {

for (i in 1:s) {

z[i] ~ dbern(psi)

z1[i] <- z[i]+1

for (j in 1:k) {

h[i,j] ~ dbern(p[j,z1[i]])

}

}

psi.fs<-sum(z[])/s

## define prior distributions for model parameters

psi~dunif(0,1)

for (j in 1:k) {

p[j,1] <- 0

p[j,2] ~ dunif(0,1)

}

}

Post. Distn.  

mean = 0.56, sd = 0.10 

{2.5, 50, 97.5} %iles =  

 {0.37, 0.56, 0.78} 

Post. Distn. * 

mean = 0.56, sd = 0.08 

{2.5, 50, 97.5} %iles =  

 {0.46, 0.54, 0.74} 
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Spatial Correlation 

 Probability of occupancy at a unit may depend upon 
whether a ‘neighbouring’ unit is also occupied. 

 

 Some forms of clustering may be well explained by 
covariates. 

 

 May not be important to account for if interest is in an 
overall measure of occupancy. 

 

 May be more important if interest is in maps or 
predictions of unit-level occupancy. 
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Spatial Correlation 

 What fraction of cells are occupied? 

 What would be the appropriate SE? 
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Spatial Correlation 

 Recent simulations have confirmed 

that overall estimates are unbiased, 

with appropriate standard errors, 

without accounting for spatial 

correlation when units are sampled 

randomly. 
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Spatial Correlation 

 Sargeant et al. (2005) suggested an 

approach using image restoration 

methods. 

 doesn’t generalize easily to 

incorporate covariates. 

 

 Magoun et al. (2007) assumed 

spatially correlated residuals with 

logistic regression. 
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Spatial Correlation 

 Alternatively, could model occupancy with 
the autologistic function. 

 essentially the logit link with an ‘effect’ 
related to the number of occupied 
neighboring units. 

 

 
• gi is a function of the occupied ‘neighboring’ units 

 

 But the exact occupancy state of units will 
often be unknown… 

0 1 1 2logit(ψ )i i ix g    
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Spatial Correlation 

 Theoretically, could integrate over all 

unknown occupancy states for all 

units in the landscape (i.e., develop 

ODL). 

 

 Practically, much easier to develop 

the complete data likelihood and use 

data augmentation or EM algorithm. 
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Spatial Correlation 

 Detection probability may also be a 

function of the number of neighboring 

occupied units (e.g., harder to detect 

a species at the edge of it’s range). 
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Summary 

 Historically, investigating patterns in 
occupancy has been the main focus of such 
studies. 

 A suite of flexible methods is now available 
that account for: 

 detectability 

 covariates 

 unequal sampling effort 

 heterogeneity 

 finite populations 

 spatial correlation 

 Useful for assessing a snapshot of a 
population, but not for understanding the 
underlying dynamics. 


